<table>
<thead>
<tr>
<th>Name</th>
<th>Example</th>
<th>Point of Concurrency</th>
<th>Special Property</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>perpendicular bisector</td>
<td></td>
<td>circumcenter</td>
<td>The circumcenter P of $\triangle ABC$ is equidistant from each vertex.</td>
<td></td>
</tr>
<tr>
<td>angle bisector</td>
<td></td>
<td>incenter</td>
<td>The incenter Q of $\triangle ABC$ is equidistant from each side of the triangle.</td>
<td></td>
</tr>
<tr>
<td>median</td>
<td></td>
<td>centroid</td>
<td>The centroid R of $\triangle ABC$ is two thirds of the distance from each vertex to the midpoint of the opposite side.</td>
<td></td>
</tr>
<tr>
<td>altitude</td>
<td></td>
<td>orthocenter</td>
<td>The lines containing the altitudes of $\triangle ABC$ are concurrent at the orthocenter S.</td>
<td></td>
</tr>
</tbody>
</table>
7.1 Perpendicular Bisector Theorem
If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

Example: If CD is a ⊥ bisector of AB, then $AC = BC$.

7.2 Converse of the Perpendicular Bisector Theorem
If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Example: If $AE = BE$, then E lies on CD, the ⊥ bisector of AB.

Theorem 7.3 Circumcenter Theorem
Words The perpendicular bisectors of a triangle intersect at a point called the circumcenter that is equidistant from the vertices of the triangle.

Example: If P is the circumcenter of $\triangle ABC$, then $PB = PA = PC$.

Theorems Angle Bisectors
7.4 Angle Bisector Theorem
If a point is on the bisector of an angle, then it is equidistant from the sides of the angle.

Example: If BF bisects $\angle DBE$, $FD \perp BD$, and $FE \perp BE$, then $DF = FE$.

7.5 Converse of the Angle Bisector Theorem
If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the bisector of the angle.

Example: If $FD \perp BD$, $FE \perp BE$, and $DF = FE$, then BF bisects $\angle DBE$.
7.1 to 7.2 cheatsheets

Theorem 7.6 Inceter Theorem

Words
The angle bisectors of a triangle intersect at a point called the *incenter* that is equidistant from the sides of the triangle.

Example
If P is the incenter of $\triangle ABC$, then $PD = PE = PF$.

Theorem 7.7 Centroid Theorem

The medians of a triangle intersect at a point called the centroid that is two thirds of the distance from each vertex to the midpoint of the opposite side.

Example
If P is the centroid of $\triangle ABC$, then $AP = \frac{2}{3} AK$, $BP = \frac{2}{3} BL$, and $CP = \frac{2}{3} CJ$.

Key Concept Orthocenter

The lines containing the altitudes of a triangle are concurrent, intersecting at a point called the *orthocenter*.

Example
The lines containing altitudes \overline{AF}, \overline{CD}, and \overline{BG} intersect at P, the orthocenter of $\triangle ABC$.

Theorem 7.8 Exterior Angle Inequality

The measure of an exterior angle of a triangle is greater than the measure of either of its corresponding remote interior angles.

Example:
$m\angle 1 > m\angle A$
$m\angle 1 > m\angle B$
1 **Perpendicular Bisectors** A segment bisector is any segment, line, or plane that intersects a segment at its midpoint. If a bisector is also perpendicular to the segment, it is called a **perpendicular bisector**.

\[\overline{PO} \text{ is a bisector of } \overline{AB}. \]

\[\overline{RS} \text{ is a perpendicular bisector of } \overline{JK}. \]

1 **Medians** A **median** of a triangle is a segment with endpoints being a vertex of a triangle and the midpoint of the opposite side. Every triangle has three medians that are concurrent. The point of concurrency of the medians of a triangle is called the **centroid** and is always inside the triangle.

\[\overline{CD} \text{ is a median of } \triangle ABC. \]

2 **Altitudes** An **altitude** of a triangle is a segment from a vertex to the line containing the opposite side and perpendicular to the line containing that side. An altitude can lie in the interior, exterior, or on the side of a triangle.

\[\overline{BD} \text{ is an altitude from } B \text{ to } \overline{AC}. \]

Every triangle has three altitudes. If extended, the altitudes of a triangle intersect in a common point.